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Abstract— General formulas are derived which specify the heat flux over an arbitrary receiving surface for

radiation incident upon and specularly reflected from an arbitrary curved surface. The direction of the

reflected ray and its intersection with the receiving area provides a transformation which maps an element

of reflecting area onto the receiving area through the Jacobian determinant. Results are expressed in terms

of the equations of the surfaces. The general formulas are reduced to the special case for which the reflecting
area is a surface of revolution.

NOMENCLATURE 7, angle of incidence on receiver
S0,51,8,, area of source, reflector and re- surface;
ceiver, respectively; & energy flux incident on unit area
dS,,dS,,dS,, element of area of source, re- of reflector ;
flector and receiver, respectively; &, energy flux incident on unit area
r, distance from dS, to dS; ; of receiver
2(x, y), equation of reflector surface ; P, reflectivity of reflector;
r, distance from dS; to dS,;
Z(X,Y), equation of receiver surface; P, [(6z/ ax)z + (0z/0y)* + 17} :
LI K, Cartesian unit vectors; [(QZ/ 0X)* + (QZ/ 8 Y + 1]
So» flux density at reflector point; ratio of xy projection of dS,/dS;;
B, brightness of emitting surface ; J(x, ), (X, Y)/o(x, y) = Jacobian deter-
nos outward unit normal to emitting minant connecting dxdy of re-
surface ; flector with dXdY on receiver;
n,n outward unit normal to reflecting file, ), ix, y)idx, y): ratio of x com-
surface; ponent to z component of unit
n,, outward unit normal to receiver vector which specifies direction of
surface ; reflected radiation ;
i, unit vector which specifies direc- fx,y),  ix, y)/iAx, y): ratio of y com-
tion of incident radiation; ponent to z component of unit
i, unit vector which specifies direc- vector which specifies direction of
tion of reflected radiation; reflected radiation;
U, angle of incidence on reflecting n, index of refraction ;
surface ; k, extinction coefficient ;
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o, electrical conductivity ;

K, susceptibility ;

w, angular frequency of radiation ;
€05 permittivity of free space, 885 x

10712 coul?/n - m?;

reflectivity for radiation with elect-

ric vector parallel to plane of

incidence ;

o1, reflectivity for radiation with elect-
ric vector perpendicular to plane
of incidence.

P

I. INTRODUCTION

AN IMPORTANT problem in radiant heat transfer
is to determine the spatial distribution of radiant
energy originating from a source S, and re-
flected from a surface S, before arriving at a
receiving surface S, (Fig. 1). One would like to

FIG. 1. Geometrical configuration reflector and receiver.

know the detailed energy distribution over S,
expressed, for example, as contours of equal
illumination. Illumination is the energy crossing
a unit area per unit time. Total energy flux over
S, can be obtained by integration.

In general, part of the energy incident upon
S, will be diffusely reflected and the remainder
specularly reflected. The two contributions can
be added to obtain the net heat transfer due to
reflection. Diffuse reflection has been treated in
detail in the literature [ 1]. However, no general
analytical procedure has been developed for
calculating the distribution over an arbitrary
receiving surface for radiation which has been
specularly reflected from a curved surface. One
can, in principle, determine the flux by individual
ray tracing but this method is cumbersome and
only approximate. For example, if one ray is
assigned to a unit area perpendicular to the in-
coming flux one can draw the reflected ray and
determine its point of intersection with a
receiving surface. Counting the number of rays
per unit receiving area gives one a measure of the
flux incident upon that area. Special cases of
specular reflection have been solved analytically
in the literature but the general case where §,
is a curved surface (S, may also be curved) has
not been solved. Specular reflection from planar
surfaces has been treated in detail and also
certain ruled surfaces. The usual approach is to
determine the image position of S, created by
the light reflected from S,. The image is then
regarded as a new effective source.

The image method was first applied to
specular reflection from planar surfaces [2] and
was later applied to cylindrical and conical
cavities [3]. Somewhat later, an attempt was
made [4] to generalize the image method so
that one would be able to handle general non-
planar reflecting surfaces; however, their ap-
proximation for the flux per unit area on a
receiver surface S, reduces, in effect, to that
which one would have obtained if the element
of reflecting surface were planar. If one is to use
an image method for calculating the flux per
unit area on the receiver surface §,, one must
not assume as is done in [4] that an image
appears at a distance from the element of reflect-
ing surface which is equal to the distance of the
source element dS, to the reflecting surface.
Actually there will not be a simple, well defined
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image distance since the reflecting surface will
have a variable radius of curvature depending
upon the orientation of the plane formed by the
normal to the surface and the incident ray [6].
An element of curved surface is characterized by
two “principal” radii of curvature. The variable
radius of curvature referred to (called the normal
curvature) will also affect the image configura-
tion. In general the image will be enlarged and/
or compressed and distorted.

In view of the difficulties encountered when
trying to apply the image method to specular
reflection from nonplanar surfaces, we have
developed a different and completely general
method for calculating the flux density on an
arbitrary receiver surface after the incident
radiation has been specularly reflected from an
arbitrary surface. When applying our method to
planar surfaces, we obtain the same results as
one would using the image method. We are also
in agreement with the results of [ 3] for the cone
or cylinder. It should be mentioned that the
procedure adopted in [3] is correct for the
specific ruled surfaces which were studied but
the authors do not derive formulas for nor state
recipes for the general problem involving arbi-
trary, reflecting surfaces.

When deriving formulas for the flux density
on an arbitrary curved surface S,, resulting from
specular reflection of radiation from curved
surface §,, three kinds of sources of radiation
may be involved. First the light incident upon
S, may be parallel rays from infinity. Resuits in
this case will be applicable, for example, to the
calculation of energy flux over various areas of
a space vehicle when sunlight is reflected from
other regions of the vehicle.* Secondly the
source S, may be a “point” source a finite dis-
tance from S, and S, with strength proportional
to dS,. Finally by integrating over all elements
dS, one may apply the results to specular
reflection of radiation originating from an
extended source.

We first derive a perfectly general formula for

* The Sun subtends an angle of 4 degree from the Earth
so the rays are approximately parallel in this case.
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the energy incident upon dS, when a given
energy flux is incident upon dS,. This phase of
the calculation will be independent of the
position of the source of the flux incident upon
dS,. The actual amount of flux incident upon
dS,; will vary according to the nature of the
source as mentioned for the three cases above.
The reflector surface will be described by the
general form z = z(x, y) and the receiver surface
by Z = Z(X, Y). Users will then be able to
apply the general results to arbitrary geo-
metries.

II. DERIVATION OF GENERAL FORMULA
The incident flux onto an element of area dS,
on the reflecting surface is given by

gin = SO COS,Ltdsl (1)

where cos (= —mn, i), n, is the unit normal
vector to the reflecting surface and i is a unit
vector in the direction of the incident ray (see
Fig. 1). s, is the energy per unit area per unit
time (flux density) associated with the incident
beam which in the case of parallel rays from
infinity (the Sun) is the solar constant at the
location of the reflecting surface. If the source
emits light in accordance with Lambert’s law
then the flux emitted per unit area is Bng- i/n
and s, in (1) 1s replaced by

(1a)

where B is the brightness of dS, and r is the
distance from dS, to dS,. Then the flux per unit
area on the receiver surface is equal to the flux
in, &, times the reflectivity of the reflecting
surface, p, divided by the area out, dS,, on the
receiver surface:

& = sopcos pdS,/dS,. (2)

So = Bngy-idSy/nr?

We now write an expression for dS,/dS, using
the basic idea that the equation for the reflected
ray provides a transformation between the ele-
ment of reflecting area dS; and the element of
receiving area dS,.

In terms of the Cartesian coordinates x, y, z
on the reflecting surface and the corresponding
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receiving point X, Y, Z on the receiver surface,
the equation of the straight line reflected ray
may be written as

X—x iy _
Z(X,Y) —z2x,y)  idx,y) filx, y) (3a)
Y-y _ix,y) _ ) ab)

Z(X,Y) — 2(x,y)  idx,y)

where the equations for the reflecting surface,
z = z(x,y), and for the receiver surface, Z =
Z(X, Y), have been inserted and where (i, i}, i)
specify the direction of the reflected ray. Equa-
tions (3a) and (3b), in effect, mean that we can
express the element of area dS, in terms of the
differential product dxdy which can be related
to dS,. Explicitly, one has in terms of the pro-
jection dXdY of dS, in the xy plane:

ds, = [(8Z/6X)* + (6Z/eY)* + 111 dXdY (4a)
from which

dS, = [(BZ/3X)? + (BZ/dY)P + 1]}

|J(x, y)| dxdy (4b)

where J(x, y) is the Jacobian of the transforma-
tion (3a) and (3b) and is given by

J(x,y) = AX, Y)/o(x, y) = (0X/0x)(CY /0y)
— (0X/2y) (@Y /0x). (4c)

Equation (4a) is obtained by noting that the pro-
jection of dS, in the x.y plane is

dXdY = n,- KdSz.

n, is the normal to dS, and is given by

_grad [z - Z(x,Y)]
"= Jerad [Z — Z(X, V)]

_[-@8zZ/ox) — J(@Z/3Y) + K]
~ [(0Z)0X)* + (0Z/0Y Y + 1]F
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Substituting this into the above yields (4a).
Equation (4b) is obtained by noting that the
equations(3a,b)arenothingmore thanarelation-
ship between X, Y and x, y. Thus, one can con-
sider that the position vector of a point on the
receiver surface is given by

R = X(x, I + Y(x,yW + Z(x, y)K.

If one now varies x by dx holding y constant and
varies y by dy holding x constant one generates
two independent vectors (0R/dx)dx and
(6R/0y)dy on the receiver surface whose cross
product will be equal to the magnitude of the
parallelogram element of area dS, and will be
in the direction of the normal to the receiver
surface, thus,

dS,; = (OR/dx)dx x (OR/3y)dy
= [Ia(Y, Z)jé(x, y) + JAZ, X)/d(x, y)
+ Ko(X, Y)jd(x, y)]dxdy.

One may now use the general property of
Jacobians

aY,Z) AY,Z)AX.Y)

Ax.y) AX.Y)dx.y)

AZ, X)
a(x, y)
_AZ. X)AX,Y)

X, Y) dx,y)

To write

_AX.Y)
27 Ax, ¥} -

0z

02, 9z, K] dxdy.

S dXT oY

The magnitude of dS, corresponds to (4b).
One can also express dS; in terms of its
projection on xy plane

dS, = [(0z/8x)* + (9z/3y)* + 1T*dxdy. (4d)

Combining the results of equations (4b) and (4d)
with (2) gives a general expression for the flux
per unit area on receiver surface:

_ Sop cos uf(0z/0x)* + (9z/0y)* + 1]}
T [(0Z/8X)? + (8Z/dY ) + 1HJ(x, y)|”

(5)
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Before equation (5) can be used for calculations,
one must first express the direction cosines of the
reflected ray in terms of the direction of the
incident ray and the unit normal to the reflecting
surface. Then equations (3a) and (b) can be used
to evaluate the Jacobian as given by (4c).

The direction of the specularly reflected ray,
i’, must satisfy two conditions: (1) the direction
of the incident ray, i, the normal to the reflecting
surface at the point of incidence, n, and the
direction of the reflected ray itself are coplanar
(Law of Coplanarity) and (2) the angle between
the incident ray and normal and the angle
between the reflected ray and normal are equal
(Law of Reflection). In general, i', can be written
as a sum of components parallel to n and normal
to n (see Fig. 2): i =(n xi)x n— (n-in.

F1G. 2. Components of reflected light ray, i'.

Expanding the vector triple product one has
= —2n(n-i) +i (6)

where i’ is a unit vector and satisfies by con-
struction the Law of Reflection and the Law of
Coplanarity.

A general procedure for obtaining the
Jacobian (4¢) is to take the complete differential
of (3a) and (b) where for dz and dZ one inserts
the expression obtained by taking the total
differential of the respective surface equations.
The result will be in the form
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AldX + BldY = aldx + bldy
Ade + Bde = azdx + bzdy

where the coefficients of dX, dY, dx, dy are then
known functions of x, y, X, Y. One then solves
(7) for dX and dYin terms of dx and dy:

1 8z of, oz
WX =7 {[1 —a TG

+(Z — Z)— ({qufl %f)] dx
Erz-a D%y
+ —B;f1+( ‘Z'a*}j ay/t
ofy . o
+(Z — )FY (6 1~ ayfz):l d}’}

L {[—?M(z L)
X

A
(f1 afz .
-’a( 2 ‘a”xf')] dx

0z of, 07,
+{1—a‘yf2+( )*——a‘ih

+(Z — )—' (aflfz szfl)jl d}’}

0z
where 4 =1 — é}fl -

(7

¥ oz (7a)

dY =

+{Z -
(7b)

oz

a7

Since in general

dX = (8X/dx)dx + (8X/0y)dy
= (0Y/ox)dx + (0Y/dy)dy (8)

One can identify the coefficients of dx, dy in (8)
with coefficients of dx, dy in the specific ex-
pressions (7a) and (b) for dX, dY to obtain
explicit expressions for (0.X/0x), (¢ Y/dx), (0 X /3y),
(0Y/dy). With these available one can now
evaluate the Jacobian from (4c). However, if one
uses this direct procedure the algebra involved
to obtain a final explicit result is very lengthy.

One may considerably simplify the algebra
by recognizing that equations (3a) and (b} are of
the form
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Fyx,y,z2(x,y); X, Y Z(X, Y);

Sl =X —x—-(Z-2)f; =0 (9a)
Fax,y,2(x, y); X, Y, Z(X, Y);
LHxy)y=Y—y—(Z-22,=0. (9b)

Then by use of the quotient property of the
Jacobian one can write

Jixy = &) _ DIFL Fy)/Dix,y)

d(x,y) ~ D(F,F,)/D(X,Y)

(10)

where by the chain rule for partial differeniiation

Dx  dx

0F, 0z OF, &f,

0z ax | 9f, ox

which makes clear the definition of D/Dx and
D/Dy. The Jacobian J(x, y) may be evaluated
from (10) making use of the definition of the
function F, and F, from (3) and (9) or one may
use the brute force first method. In either case
one finds

J(x,9) = {lo +(Z — ), +(Z — 221, /A (11)

Comg i+ 200/ + ()] [(92/0%)° + (Bz/ay)znf »1]%
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where 1, 1, 1, and A4 are given by (11). We shall
call equation (12) the flux flow equation.

The appearance of Z — z and (Z — z)? in the
denominator of (12) is due to the preferred role
of z in the equation used for the surfaces. The
distance r from reflector to receiver may be
displayed by noting that (Z — z) = r'iz. The
term (Z — z)*1, [= ()4(i:)*1,] dominates I,
and(Z — z)I, for large values of ¥’ and expresses
the inverse square law for flux attenuation. When
the radii of curvature of the reflector and receiver
surfaces are comparable to v and r, all terms are
equally important. The terms I, I, and I, each
express the role of the curvature of the reflector
surface in the final expression for &. It is possible
to express equation (12) in terms of the intrinsic
geometry of the surface, that is, in terms of the
Gaussian curvature [ 6], the mean curvature and
the normal curvature. When this is done and the
curvature is allowed to go to zero, that is, when
the element of surface is degenerated to a flat
element of surface one is left with the following
formula for the Jacobian (11) for point source
radiation incident upon a planar facet where r’

Jix,y) =

n,-i[0Z/0X)* + (0Z/oYY + 1]}

where

Iy =1 — f(0z/0x) — f,(0z/0y)
R Ayoz o

=3t th [axa‘m}]
e 2]

I, = (9f1/0x)(0f3/0y) — (2f1/0y) (0f2/0x)
4 =1—filloZ/oX) — f,(0Z/0Y)
fo = iz f, = iy

Equation (5) can then be written as

sop cos u[(0z/0x)? + (0z/0y)* + 1]*

— (13a)

is the distance from dS; to dS,. Combining (13a)
with (5) or (12) using (1a) one obtains

_png-in,-i'dS,

a(r + r)? (13b)

Equation (13b) is the result given in [4] for the
view factor for radiation specularly reflected
from a general curved surface. Thus one can see
that the image method formulated in [4]
inadvertently neglects all curvature effects. For
incident plane wave, r — <o, and equation (13a)
when combined with (5) gives

& = sgpcosy (13¢)

4|

¢= [(6Z/6X)* + (0Z/oYV: + 181, + (Z — 2, + (Z — 201,

(12)
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as it should. The exact expression (12), con-
taining all terms, is relatively easy to apply.

In order to calculate the flux per unit area at a
specified point on the receiver surface, one need
only eliminate the intermediate reflecting co-
ordinates x, y from (12) by applying (3a) and (b).
The resulting value for the flux per unit area on
the receiver surface is then a function of the
direction and strength of incident radiation, the
equations of the reflecting surface and the
receiver surface, and the reflectivity.

To obtain contours of constant illumination
over the receiver surface one must essentially
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x* + y*. The equation of the receiver surface
will be left in the cartesian form Z = Z(X, Y).

Introducing polar coordinates
x=Rcosf;y=Rsinf;z=z (14)

the partial derivative with respect to x and y
appearing in (11) and (12) can be transformed
into partial derivatives with respect to R and 8
as follows

0/0x = cos 80/0R — (sin 0/R)3/00

0/0y = sin 80/0R + (cos 8/R)0/00. (14b)

The flux flow equation then becomes

& =

Sop cos u[(0z/0R)* + 1]3|4|

[0Z/6X)? + (8Z/oYV + 111, + (Z — o), + (Z — 21|

invert the flux flow equation. One assigns a
definite value to &/s, in equation (12) for the
desired contour, and then solves equation (12)
for either x or y whichever is more convenient.
When assigning a value to &/s, one should first
use equation (12) to calculate a typical value for
the region of interest. Equations (12), (3a) and
(b) are then used to solve for X, Yand one of the
coordinates x, y while the other coordinate is
treated as a parameter and assigned arbitrary
values which lie on the surface. The resulting
point (X, Y) on the receiver surface will define
a point on the given contour. Other points on
the same contour are obtained by varying either
x or y and solving (3a), (b) and (12) for the
corresponding X, Y. Clearly this procedure can
be followed for any desired value of the contour.

III. SPECULAR REFLECTION FROM A SURFACE OF
REVOLUTION ONTO AN ARBITRARY RECEIVER
SURFACE

In this section we shall specialize the flux
flow equation (12), to the special case where the
receiver surface has axial symmetry about the
z axis, in which case the equation of the reflecting
surface is of the form z = z(R) where R? =

where I, = 1 — (0z/0R) (f,cos 8 + f, sin 6)

B oy 19,
11 _COSH'<5§+EE

, 9, 14,
+ sin 6 <ﬁ - ig@

10z of of,
+ R—a—R<fz 5@ 2 56_

I, = [(af1/aR) (6f2/00)
— (8f1/06) (2f2/0R))/R.

The connection between the reflecting point
(R, 0, z) and the receiver point (X, Y, Z) is given

by
X — Rcos iR, 0
RO R0

Z(X,Y)— Z(R) 4R, 0)

(16a)

Y- Rsin@ _ iR, )]
Z(X,Y) — Z(R) iR, 0)

=£(R, 0. (l16b)

The interpretation and application of equations
(15), (16a) and (b) is the same as described in
section I1.
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IV, VARIATION OF COEFFICIENT OF REFLECTION
WITH ANGLE OF INCIDENCE AND DIRECTION OF
POLARIZATION

In general the coefficient of reflection p
appearing in equation {12} will depend on the

angle of 1nc1dence and the dlrectlon of polariza-
tion. When the polarization is parallel to the
plane of incidence the reflectance is given by

Fresnel's equation [5]

gzﬁbu

‘n+p, No(i x n)jli x n}]Pcos,u
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where

P = [(0z/0x)* + (dz/dy)* + 1PH/[(8Z/0X)*

+(0Z/0YY + 115

If the incident light is plane polarized with
direction of polarization given by N, the electric
vector must be decomposed into components
parallel and perpendicular to the plane of
incidence. I s, is the intensity of the polarized
light the net flux is given by

2

L(x, »)|

fa+pt—cP +[(-a+b} - d}?
PU=Ta+bF + ] + [(—a+ b)f +dJ?
{17a)
where u in this case is the angle of incidence
{cosp= —ny-i);and
a=(n* — k* — sin® p)/2
b = [(n* — k* — sin? p)* + 4nk*}32

¢ =(n* ~ k¥ cosp
d = 2nkcos

where n is the index of refraction and k the
extinction coefficient. The optical constants n
and k for a metal are related to the susceptibility
k and conductivity ¢ through gox — is'/w =
(n — ik)®>. Thus k = (n* — k?)/eg and ¢’ = 2nkao.
£o 1s the permittivity of free space and has the
value 8854 x 107 1'% coul’/n-m? in the mks
system, w is the angular frequency of the light.

For polarization perpendicular to the plane
of incidence:

feosp—(a+ b —a+b

= . 17b
- [cosp + (a+ Y] —a+b (179)

For unpolarized incident light of net intensity
Sq» the final resultant flux will be given by

So (p{ + p‘L}P cos

= 18
2 (J(Y,y){ (18)

(19)

V. SUMMARY AND CONCLUSION

The observation has been made that the
equation of the reflected ray provides a trans-
formation between the coordinates of a point
on the receiver surface and a point on the
reflector surface. This transformation enables
one by use of the Jacobian connecting the
element of reflector area to the element of
receiver area to write an explicit analytical
expression for the flux per unit area incident on
the receiver area as gitven by the “flux flow
equation” {12). The general flux flow equation
has been specialized to the case when the
reflector area is a surface of revolution, equation
(15).

It is a straightforward matter to calculate the
flux onto a given receiver area from equations
(12) or (15). Contours of equal heat flux on the
receiver surface may be obtained by solving the
flux flow equation (for constant &) simultane-
ously with the equations for the reflected ray,
{3a)and (b}. This can always be done numerically.
In some cases the inversion may be carried out
completely analytically {for exampile, for a cone)
or in other cases partially inverted. For compli-
cated geometries it may not be a simple matter
to invert the Jacobian in order to solve for the
loci of points on the receiving area having a
specified value for the flux density. We have
succeeded in carrying out complete or partial
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inversion, however, for three specific geometries;
the results are reported in the following paper.
When inversion is not possible analytically and
is complicated numerically one may simply
solve for the receiver point coordinates and
calculate the associated flux density for a
number of arbitrary or systematically chosen
incident rays. This is easy to do. It may then be
possible to connect points of approximately
equal flux values by hand or perhaps to least
square fit a polynomial to points of approxi-
mately equal flux values. When one is only
interested in total heat transfer to a given area
it is only necessary to integrate the flux over the
area, and contours are not necessary. The flux
contours contain much more information than
total flux.

It should be remarked that the general results
described in this paper are not restricted to
radiation reflected from a curved surface. By
replacing equation (4) by the equation for
refracted rays one may substitute the expressions
for the refracted, x, y, z components in equations
(3a) and (b) and perform similar calculations
for refracted flux. This particular case usually
is not of interest in heat transfer but is important
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in optics. All of the preceding results are applic-
able whenever the incident waves obey ray
optics. The general criterion is that the wave-
length should be short relative to the dimension
of the reflecting or refracting objects. Thus the
formulas developed here will be applicable to
propagation of ultrasonic waves, short wave-
length seismic waves, ray optics as well as radiant
heat transfer.
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REFLEXION SPECULAIRE DU RAYONNEMENT THERMIQUE PAR UNE SURFACE
REFLECHISSANTE ARBITRAIRE SUR UNE SURFACE RECEPTRICE ARBITRAIRE

Résumé— On établit des formules générales qui déterminent le flux thermique sur une surface réceptrice

arbitraire pour un rayonnement incident et spéculairement réfléchi par une surface incurvée arbitraire.

La droite support du rayon réfléchi et son intersection avec la surface réceptrice impliguent une

transformation qui lie un élément de surface réfléchissante a I'aire réceptrice par le déterminant Jacobien.

Les résultats sont exprimés en fonction des équations des surfaces. Les formules générales sont réduites
au cas spécial ou la surface réfléchissante est de révolution.

SPIEGELNDE REFLEXION DER WARMESTRAHLUNG VON EINER
WILLKURLICHEN REFLEKTORFLACHE AUF EINE WILLKURLICHE
EMPFANGERFLACHE

Zusammenfassung— Es werden allgemeine Gleichungen abgeleitet, die den Wirmestrahlungstrom auf eine
willkiirliche Empfiingerfliche beschreiben, der von einer willkiirlich geformten Fliche spiegelnd reflektiert

wird.

Die Richtung des reflektierten Strahles und sein Durchstosspunkt mit der Empfingerflache definieren
eine Transformation, die ein Element des reflektierenden Gebietes auf das Empfingergebiet iiber die
Jakobische Determinante abbildet. Die Ergebnisse werden in Abhiingigkeit von den Gleichungen der
Oberflichen angegeben. Die allgemeinen Gleichungen werden auf den Spezialfall der Rotationsfliche

als reflektierendes Gebiet beschrinkt.
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3EPHKAJBHOE OTPAMEHUE TEILUIOBOI'O U3JAYUYEHUS OT HPOU3BOJALHON
OOBEPXHOCTH OTPAHKATES K HHPOU3BOJBHON HOBEPXHOCTH
HPUEMHNEKA

Annoramna—ITonyuensl oiie GopMybl JUIA OipejleIeHUS IOTOKA Telld HA POUBBOIBLHOH
MOBEPXHOCTH MPUEMHUKA W3JIy4eHMA, TMAJAlNero Ha UCKPUBJIEHHYIO MOBEPXHOCTH TPOU3-
BOJBHOH (GOpMBI, a 3aTeM OTpaskeHHOro oT Heé. HampaByienue OTpameHHOTO Jyyd U ero
lIEPEeCeUEHUE ¢ MOBEPXHOCTHIO TpUeMHIKA 1T03B0JIAeT MPOM3BECTH NpeolpasoBane, KOTOpoe
0To0paskaeT SJeMeHT OTparkaiolleil MOBEPXHOCTH Ha NPHHUMAIEH ¢ NOMOILIO JeTep-
muHanTh fIkoGa. PeayibTarsl lpeacraBieHb ypaBHeHUAMU A uosepxaoctu. [losyuennr
ofmue QOpMyJBl JUIA CJAYYaA, KOPga OTPAKAMILAH 1I0BEPXHOCTB ABJIAETCS 110BEPXHOCTL
BpaUleHUA.



