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Abstract ~~ General formulas are derived which specify the heat flux over an arbitrary receiving surface for 
radiation incident upon and specularly reflected from an arbitrary curved surface. The direction of the 
reflected ray and its intersection with the receiving area provides a transformation which maps an element 
of reflecting area onto the receiving area through the Jacobian determinant. Results am expressed in terms 
of the equations of the surfaces. The general formulas are reduced to the special case for which the reflecting 

area is a surface of revolution. 

NOMENCLATURE 

S,,, S,,&, area of source, reflector and re- 
ceiver, respectively ; 

ds,, dS1, ds,, element of area of source, re- 

r, 
4% Yh 

I 

2x7 Y), 
1, J, K, 
SO, 
B, 
no, 

nlT n, 

n2, 

i, 

.I 

1, 

P, 

flector and receiver, respectively ; 
distance from d&, to dS1 ; 
equation of reflector surface ; 
distance from dS1 to dS2 ; 
equation of receiver surface ; 
Cartesian unit vectors; 
flux density at reflector point ; 
brightness of emitting surface ; 
outward unit normal to emitting 
surface ; 
outward unit normal to reflecting 
surface ; 
outward unit normal to receiver 
surface ; 
unit vector which specifies direc- 
tion of incident radiation ; 
unit vector which specifies direc- 
tion of reflected radiation : 
angle of incidence on reflecting 
surface ; 
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Jk Y), 

fibs Y), 

f2k Yh 

z 

angle of incidence 
surface ; 
energy flux incident 
of reflector ; 
energy flux incident 
of receiver ; 

on receiver 

on 

on 

reflectivity of reflector ; 

[(az/ax)2 + (az/ay)2 + llf 
[(az/ax)2 + (az/aY)2 + i]’ : 
ratio of xy projection of dS,/dS2 ; 

8(X, Y)/a(x, y) = Jacobian deter- 
minant connecting dxdy of re- 
flector with dXd Y on receiver; 
i:(x, y)/i:(x, y): ratio of x com- 
ponent to z component of unit 
vector which specifies direction of 
reflected radiation ; 
ii.(x, y)/L(x, y): ratio of y com- 
ponent to z component of unit 
vector which specifies direction of 
reflected radiation ; 
index of refraction ; 
extinction coefficient ; 

unit area 

unit area 
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electrical conductivity ; 
susceptibility ; 
angular frequency of radiation ; 
permittivity of free space, 8.85 x 
lo- I2 couP/n . m2 ; 
reflectivity for radiation with elect- 

ric vector parallel to plane of 
incidence ; 

reflectivity for radiation with elect- 
ric vector perpendicular to plane 

of incidence. 

I. INTRODUCTION 

AN IMPORTANT problem in radiant heat transfer 
is to determine the spatial distribution of radiant 

energy originating from a source So and re- 

flected from a surface S, before arriving at a 

receiving surface S, (Fig. 1). One would like to 

FIG. 1. Geometrical configuration reflector and receiver 

know the detailed energy distribution over S, 
expressed, for example, as contours of equal 
illumination. Illumination is the energy crossing 
a unit area per unit time. Total energy flux over 
S2 can be obtained by integration. 

In general, part of the energy incident upon 

S, will be diffusely reflected and the remainder 

specularly reflected. The two contributions can 
be added to obtain the net heat transfer due to 

reflection. Diffuse reflection has been treated in 

detail in the literature [l]. However, no genera1 
analytical procedure has been developed for 

calculating the distribution over an arbitrary 

receiving surface for radiation which has been 
specularly reflected from a curved surface. One 

can, in principle, determine the flux by individual 

ray tracing but this method is cumbersome and 

only approximate. For example, if one ray is 
assigned to a unit area perpendicular to the in- 

coming flux one can draw the reflected ray, and 
determine its point of intersection with a 

receiving surface. Counting the number of rays 

per unit receiving area gives one a measure of the 

flux incident upon that area. Special cases of 
specular reflection have been solved analytically 
in the literature but the general case where S, 

is a curved surface (S, may also be curved) has 
not been solved. Specular reflection from planar 

surfaces has been treated in detail and also 
certain ruled surfaces. The usual approach is to 
determine the image position of So created by 

the light reflected from S,. The image is then 
regarded as a new effective source. 

The image method was first applied to 
specular reflection from planar surfaces [2] and 

was later applied to cylindrical and conical 
cavities 133. Somewhat later, an attempt was 
made [4] to generalize the image method so 
that one would be able to handle genera1 non- 
planar reflecting surfaces; however, their ap- 
proximation for the flux per unit area on a 

receiver surface S, reduces, in effect, to that 
which one would have obtained if the element 
of reflecting surface were planar. If one is to use 
an image method for calculating the flux per 
unit area on the receiver surface S2, one must 
not assume as is done in [4] that an image 
appears at a distance from the element of reflect- 
ing surface which is equal to the distance of the 
source element dS, to the reflecting surface. 
Actually there will not be a simple, well defined 
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image distance since the reflecting surface will 
have a variable radius of curvature depending 
upon the orientation of the plane formed by the 
normal to the surface and the incident ray [6]. 
An element of curved surface is characterized by 
two “principal” radii of curvature. The variable 
radius of curvature referred to (called the normal 
curvature) will also affect the image contigura- 
tion. In general the image will be enlarged and/ 
or compressed and distorted. 

In view of the difficulties encountered when 
trying to apply the image method to specular 
reflection from nonplanar surfaces, we have 
developed a different and completely general 
method for calculating the flux density on an 
arbitrary receiver surface after the incident 
radiation has been specularly reflected from an 
arbitrary surface. When applying our method to 
planar surfaces, we obtain the same results as 
one would using the image method. We are also 
in agreement with the results of [3] for the cone 
or cylinder. It should be mentioned that the 
procedure adopted in [3] is correct for the 
specific ruled surfaces which were studied but 
the authors do not derive formulas for nor state 
recipes for the general problem involving arbi- 
trary, reflecting surfaces. 

When deriving formulas for the flux density 
on an arbitrary curved surface S2, resulting from 
specular reflection of radiation from curved 
surface S,, three kinds of sources of radiation 
may be involved. First the light incident upon 
S, may be parallel rays from infinity. Results in 
this case will be applicable, for example, to the 
calculation of energy flux over various areas of 
a space vehicle when sunlight is reflected from 
other regions of the vehicle.* Secondly the 
source S,, may be a “point” source a finite dis- 
tance from S, and S2 with strength proportional 
to dS,. Finally by integrating over all elements 
dS, one may apply the results to specular 
reflection of radiation originating from an 
extended source. 

We first derive a perfectly general formula for ______ 
* The Sun subtends an angle off degree from the Earth 

so the rays are approximately parallel in this case. 

B 

the energy incident upon dSz when a given 
energy flux is incident upon dS1. This phase of 
the calculation will be independent of the 
position of the source of the flux incident upon 
dS,. The actual amount of flux incident upon 
dS, will vary according to the nature of the 
source as mentioned for the three cases above. 
The reflector surface will be described by the 
general form z = z(x, y) and the receiver surface 
by Z = Z(X, Y). Users will then be able to 
apply the general results to arbitrary geo- 
metries. 

II. DERIVATION OF GENERAL FORMULA 

The incident flux onto an element of area dS, 
on the reflecting surface is given by 

bi” = s,CoS~ddS, (I) 

where cos p (E - n, . i), n, is the unit normal 
vector to the reflecting surface and i is a unit 
vector in the direction of the incident ray (see 
Fig. 1). sO is the energy per unit area per unit 
time (flux density) associated with the incident 
beam which in the case of parallel rays from 
infinity (the Sun) is the solar constant at the 
location of the reflecting surface. If the source 
emits light in accordance with Lambert’s law 
then the flux emitted per unit area is B n, . i/x 
and sO in (1) is replaced by 

sO -+ B no. i dS,/nr2 (la) 

where B is the brightness of dS, and I is the 
distance from dS, to dS,. Then the flux per unit 
area on the receiver surface is equal to the flux 
in, fin, times the reflectivity of the reflecting 
surface, p, divided by the area out, dS,, on the 
receiver surface : 

d = sop cos p dS, /dS2. (2) 

We now write an expression for dS1/dS2 using 
the basic idea that the equation for the reflected 
ray provides a transformation between the ele- 
ment of reflecting area dS, and the element of 
receiving area dS,. 

In terms of the Cartesian coordinates x, y, z 
on the reflecting surface and the corresponding 
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receiving point X, Y, Z on the receiver surface, 

the equation of the straight line reflected ray 
may be written as 

x-x = i l-k y) 
ax, Y) - z(x, y) 

~ = .f;(x, Y) 
iXx, Y) 

(34 

Y - y i;(x, Y) 

ax, Y) - z(x, y) 
= ~ = f;(x, y) ax, y) - (3b) 

where the equations for the reflecting surface, 
z = z(x, y), and for the receiver surface, Z = 

Z(X, Y), have been inserted and where (ii, ik, i:) 

specify the direction of the reflected ray. Equa- 
tions (3a) and (3b), in effect, mean that we can 
express the element of area dSz in terms of the 
differential product dxdy which can be related 

to dS,. Explicitly, one has in terms of the pro- 

jection dXd Y of dS, in the xy plane : 

dS, = [@Z/8X)’ + (aZ/aY,’ 

from which 

+ l]*dXdY (4a) 

dS2 = [(8Z/8X)2 + (dZ/aY)’ + l]+ 

1 J(x, y) 1 dxdy (4b) 

where .I(,~, y) is the Jacobian of the transforma- 
tion (3a) and (3b) and is given by 

J(x, y) = Lyx, Y)@(x, y) = (ax/ax) (ayjay) 

- (c?X/ay)(aY/ax). (4c) 

Equation (4a) is obtained by noting that the pro- 
jection of dS, in the x,y plane is 

dXdY = n2. KdS,. 

n2 is the normal to dS, and is given by 

grad [Z - Z(X, Y)] 

n2 = 1 grad [Z - Z(X, Y)] 1 

= [ - Z(dZ/dX) - J(aZ/dY) + K] 

[(az/axj2 + (az/aY )2 + l]+ . 

Substituting this into the above yields (4a). 

Equation (4b) is obtained by noting that the 

equations(3a,b)arenothingmorethanarelation- 
ship between X, Y and x, y. Thus, one can con- 

sider that the position vector of a point on the 

receiver surface is given by 

R = X(x, y)Z + Y(x, y)J + Z(x, y)K. 

If one now varies x by dx holding y constant and 

varies y by dy holding x constant one generates 

two independeni vectors (aR@x)dx and 
(aR/ay)dy on the receiver surface whose cross 

product will be equal to the magnitude of the 

parallelogram element of area dS2 and will be 
in the direction of the normal to the receiver 

surface, thus, 

dS2 = (8Riax)dx x (aR@y)dy 

= [za( I: -W(x, y) + Ja(z. X)/8x, y) 

+ Kd(X, Y)/d(x, p)]dxdy. 

One may now use the general property of 
Jacobians 

a Y, -a a( Y, 23 ax, Y) w, X) 
c?(s, y) qx, Y) a(& y) ’ qx, y) 

qz, X) c;(X, Y) 

ax. Y) a(x,y) 

To write 

dS 

2 

I 
dxdy. 

The magnitude of ds, corresponds to (4b). 
One can also express dS, in terms of its 

projection on xq’ plane 

dSI = [(dZI8X)2 + (6Z/@)2 + l]+dxdy. (4d) 

Combining the results of equations (4b) and (4d) 
with (2) gives a general expression for the flux 
per unit area on receiver surface : 

d = atop cos pr(azldx)2 + (azpy)2 + II+ 
[wax)2 + (~zPY)~ + II~J(~, y)~ . (5) 
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Before equation (5) can be used for calculations, 

one must first express the direction cosines of the 
reflected ray in terms of the direction of the 

incident ray and the unit normal to the reflecting 
surface. Then equations (3a) and (b) can be used 
to evaluate the Jacobian as given by (4~). 

The direction of the specularly reflected ray, 
i’, must satisfy two conditions : (I) the direction 

of the incident ray, i, the normal to the reflecting 
surface at the point of incidence, n, and the 
direction of the reflected ray itself are coplanar 

(Law of Coplanarity) and (2) the angle between 
the incident ray and normal and the angle 

between the reflected ray and normal are equal 
(Law of Reflection). In general, i’, can be written 

as a sum of components parallel to n and normal 

to n (see Fig. 2) : i’ = (n x i) x II - (n . i)n. 

FIG. 2. Components of reflected light ray, i'. 

Expanding the vector triple product one has 

i’ = - 2n(n - i) + i (6) 

where i’ is a unit vector and satisfies by con- 

struction the Law of Reflection and the Law of 
Coplanarity. 

A general procedure for obtaining the 
Jacobian (4~) is to take the complete differential 
of (3a) and (b) where for dz and dZ one inserts 
the expression obtained by taking the total 
differential of the respective surface equations. 
The result will be in the form 

A,dX + B,dY = a,dx + b,dy 

A,dX + &dY = a,dx + b,dy 
(7) 

where the coefficients of dX, d Y, dx, dy are then 
known functions of x, y, X, Y One then solves 
(7) for dX and d Y in terms of dx and dy : 

+(Z-;,;;($-gjjdx 

(7b) 

+ 

Since in general 

dX = (dX/dx)dx + (dX@y)dy 

dY= (aI$‘ax)dx + (69jGy)dy (8) 

One can identify the coefficients of dx, dy in (8) 
with coefficients of dx, dy in the specific ex- 
pressions (7a) and (b) for dX, dY to obtain 

explicit expressions for (ax/ax), (8 vax), (dX/dy), 
(a way). With these available one can now 
evaluate the Jacobian from (4~). However, if one 
uses this direct procedure the algebra involved 
to obtain a final explicit result is very lengthy. 

One may considerably simplify the algebra 
by recognizing that equations (3a) and (b) are of 
the form 
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F,(x, y, 4x, y); X, I: Z(X, Yi; 

fi(x, y)) = X - x - (Z - z)fi = 0 (9a) 

F,(x, .Y, z(x, y); x, r, ax, Y); 

f2(.x.Y)) = Y - y - (Z - z)f2 = 0. (9b) 

Then by use of the quotient property of the 
Jacobian one can write 

aw, Y) 
J(x, y) = ___ = 

ab, Y) 

WI, F,)/Wx, Y) (1o) 

DW,, F,)ID(X, Y) 

where by the chain rule for partial differentiation 

DF, aF, aF,aZ ah ah 
Dx = XY + aZaY + -afiX 

which makes clear the definition of D/Dx and 

D/Dy. The Jacobian J(x, y) may be evaluated 

from (10) making use of the definition of the 
function F, and F, from (3) and (9) or one may 

use the brute force first method. In either case 
one finds 

J(x,y) = \‘I, + (Z - z)I, + (Z - z)~I,}/A (11) 

where I,, 1 1, l2 and d are given by (11). We shall 

call equation (12) the flux flow equation. 
The appearance of Z - z and (Z - z)~ in the 

denominator of (12) is due to the preferred role 

of z in the equation used for the surfaces. The 
distance r’ from reflector to receiver may be 

displayed by noting that (Z - z) = r’i:. The 

term (Z - ~)~1, [- (r’)2(iL)212] dominates I, 

and (Z - z)l 1 for large values of r’ and expresses 

the inverse square law for flux attenuation. When 

the radii of curvature of the reflector and receiver 
surfaces are comparable to r’ and r, all terms are 

equally important. The terms I,, I 1 and I 2 each 
express the role of the curvature of the reflector 

surface in the final expression for 8. It is possible 
to express equation (12) in terms of the intrinsic 

geometry of the surface, that is, in terms of the 
Gaussian curvature [6], the mean curvature and 

the normal curvature. When this is done and the 
curvature is allowed to go to zero, that is, when 

the element of surface is degenerated to a flat 
element of surface one is left with the following 

formula for the Jacobian (11) for point source 
radiation incident upon a planar facet where r’ 

4x, y) = 
4 . $1 + 26-‘/r) + (r’/rj2] [(az/ax)2 + (az/ay)2 + iI+ 

n2 . i’[az/axY + (az/ar)2 + iI+ 
(13a) 

where 

1, = 1 -f,(az/ax) -f2(aZjay) 

1, =g+g+fl 
[ 
!!!ig af2 a: 

ay ax 1 
1 

1, = wiiax) w2m - (may) w2m 

A = i -j,(az/ax) -f2(azjarj 

fi = i:/i;y2 3 i;/i:. 

Equation (5) can then be written as 

is the distance from dS, to dS,. Combining ( 13a) 
with (5) or (12) using (la) one obtains 

6= 
pn,.in,.i’dS, 

7c(r + r’)2 ’ 
(1%) 

Equation (13b) is the result given in [4] for the 

view factor for radiation specularly reflected 
from a general curved surface. Thus one can see 
that the image method formulated in [4] 
inadvertently neglects all curvature effects. For 
incident plane wave, r + w, and equation (13a) 
when combined with (5) gives 

d = sop cos 1’ (13c) 

g=__ s,Pcos~[(~z/~~)~ + (az/ay)2 + i]*Jdj 

r(aZim2 + (az/aW + II+(I, + (Z - zj~, + (Z - ZylJ (1 
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as it should. The exact expression (12X con- x2 + y2. The equation of the receiver surface 

taining all terms, is relatively easy to apply. will be left in the Cartesian form 2 = 2(X, Y). 
In order to calculate the flux pel’ unit area at a Introducing polar coordinates 

specified point on the receiver surface, one need 
only eliminate the intermediate reflecting co- 

x = Rcostl;y = Rsin8;z = z (14) 

ordinates X, y from (12) by applying (3a) and (b). the partial derivative with respect to x and Y 
The resulting value for the flux per unit area on appearing in (11) and (12) can be transformed 
the receiver surface is then a function of the into partial derivatives with respect to R and 0 
direction and strength of incident radiation, the as follows 
equations of the reflecting surface and the 
receiver surface, and the reflectivity. 

To obtain contours of constant illumination 

alax = cos eajaR - (sin ep)alae 

a/ay = sin ea/aR + (COS ejR)alae. 

over the receiver Surface one mUSt eSSentidly The flux flow equation then becomes 

6= 
sop cos p[(az/aR)* + i]+lnl 

[(aziax)* + (az/ar)* + i]+p, + (z - zy, + (Z - z)2~21 

invert the flux flow equation. One assigns a 
definite value to b/s, in equation (12) for the 
desired contour, and then solves equation (12) 
for either x or y whichever is more convenient. 
When assigning a value to b/s, one should first 
use equation (12) to calculate a typical vklue for 
the region of interest. Equations (12), (3a) and 
(b) are then used to solve for X, Yand one of the 
coordinates x, y while the other coordinate is 
treated as a parameter and assigned arbitrary 
values which lie on the surface. The resulting 
point (X, Y) on the receiver surface will define 
a point on the given contour. Other points on 
the same contour are obtained by varying either 
?( or y and solving (3a), (b) and (12) for the 
corresponding X, Y Clearly this procedure can 
be followed for any desired value of the contour. 

III. SPECULAR REFLECTION FROM A SURFACE OF 
REVOLUTION ONTO AN ARBITRARY RECEIVER 

SURFACE 

In this section we shall specialize the flux 
flow equation (12), to the special case where the 
receiver surface has axial symmetry about the 
z axis, in which case the equation of the reflecting 
surface is of the form z = z(R) where R2 = 

UW 

(15) 

where I, = 1 - (&/dR) (ficos 0 + fi sin 0) 

1, = www (afiim 

- (vim) w2mw. 

The connection between the reflecting point 
(R, 0, z) and the receiver point (X, I: Z) is given 

by 

x - R COS e 
Z(X, Y) - Z(R) 

= i:(R, sf,(R, 0) 
ik(R, 0) 

(lfja) 

Y - R sin tl 

Z(X, Y) - Z(R) 
= i;(R, E f,(R, 0). 

iL(R, 0) 
(16b) 

The interpretation and application of equations 
(15), (16a) and (b) is the same as described in 
section II. 
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IV. VARIATION OF COEFFICIENT OF ~~~~E~IO~ Wh-e 
WITH ANGLE OF INCIDENCE AND DIRECTION OF 

POLARIZATION P - [@z/ax)2 i- (dz/r?y)2 + l]+/[(az/ax,” 

In general the coefficient of reflection p 
appearing in equation (121 wilt depend on the 

+ (c?z/aY? t Iff. 

angle of incidence and the direction of polariza- If the incident light is plane polarized with 

tion. When the polarization is parallel to the direction of polarization given by N, the electric 

plane of incidence the reflectance is given by vector must be decomposed into components 

Fresnel’s eauation T5f parallel and perpendicular to the plane of 
1 L ..I 

incidence. If s0 is the iutens~ty 
light the net flux is given by 

of the polarized 

(19) 

[(a + b)i - c]” + [(- a + h)” - d-y _.-- 
p’! = [(u + w -I- cl2 -t- I(- a + h)” -t_ d]” 

OW 

where p in this case is the angle of incidence 
(cosp= - n,ai);and 

Q = (n* - k2 - sin2 ,u)/2 

h = [(?I” - k2 - sin’ # + 4n2kz]f/2 

c = (nZ - k’)cosp 

rf = 2nk cos p 

where n is the index of refraction and k the 
extinction coefficient. The optical constants M 
and k for a metal are related to the susceptibility 
K and conductivity CT’ through ELK - S/u = 
(n - ik)‘. Thus ti = (n’ - k’)/s, and tr’ = 2~~~. 
E* is the permittivity of free space and has the 
value 8354 x IO- I2 coul’/n * m2 in the mks 
system. w is the angular frequency of the light. 

For polarization perpendicular to the plane 
of incidence : 

fcosp-(u+b)y-d-h 
Pi = ccos p + (a + h)t]2 _ a 4-‘&’ (17b) 

For unpolarized incident light of net intensity 
so, the final resultant flux will be given by 

V. SUMMARY AND CONCLUSION 

The observation has been made that the 
equation of the reflected ray provides a trans- 
formation between the coordinates of a point 
on the receiver surface and a point on the 
reflector surface. This transformation enables 
one by use of the Jacobian connecting the 
element of reflector area to the element of 
receiver area to write an explicit analytical 
expression for the fIux per unit area incident on 
the receiver area as given by the “flux fIow 
equation” (12). The genera1 flux flow equation 
has been specialized to the case when the 
reflector area is a surface of revolution, equation 
U5t. 

it is a strai~tf~rward matter to calculate the 
flux onto a given receiver area from equations 
(12) or (15). Contours of equal heat flux on the 
receiver surface may be obtained by solving the 
flux flow equation (for constant 8) simultane- 
ously with the equations for the reflected ray, 
@a) and (b). This can always be done numerically, 
In some cases ttre inversion may be carried out 
completely analytically (for example, for a cone) 
or in other cases partially inverted. For compli- 
cated geometries it may not be a simple matter 
to invert the Jacobian in order to solve for the 
loci of points on the receiving area having a 
specified v&e for the flux density. We have 
succeeded in carrying out complete or partial 
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inversion, however, for three specific geometries ; 
the results are reported in the following paper. 
When inversion is not possible ~alytically and 
is complicated numerically one may simply 
solve for the receiver point coordinates and 
calculate the associated flux density for a 
number of arbitrary or systematically chosen 
incident rays. This is easy to do. It may then be 
possible to connect points of approximately 
equal flux values by hand or perhaps to least 
square fit a polynomial to points of approxi- 
mateiy equal flux values. When one is only 
interested in total heat transfer to a given area 
it is only necessary to integrate the flux over the 
area, and contours are not necessary. The flux 
contours contain much more information than 
total flux. 

It should be remarked that the general results 
described in this paper are not restricted to 
radiation reJected from a curved surface. By 
replacing equation (4) by the equation for 
refracted rays one may substitute the expressions 
for the refracted, x, y, z components in equations 
(3a) and (b) and perform similar calculations 
for refracted flux. This particular case usually 
is not of interest in heat transfer but is important 

in optics. All of the preceding results are applic- 
able whenever the incident waves obey ray 
optics. The general criterion is that the wave- 
length should be short relative to the dimension 
of the reflecting or refracting objects. Thus the 
formulas developed here will be applicable to 
propagation of ultrasonic waves, short wave- 
length seismic waves, ray optics as well as radiant 
heat transfer. 

REFERENCES 

1. R. SIEGEL and .I. R. HOWELL. Thermal Radiation Heat 
Transfer. McGraw-Hill. New York (1971). 

2. E. R. G. ECKERT and E. M. SPARROW, Radiative heat 
exchange between surfaces with specular reflection. Inr. 
J. Heat Mass ;IFansfer 3,42-54 (1961). 

3. S. H. LIN and E. M. SPARROW. Radiant interchange 
among curved specularly reelecting surfaces--- appli~tion 
to cylindrical and conical cavities. ..I. Heat Transfer 87C. 
299-307 (1965). 

4. J. A. PLAMONDON and T. E. HORTON. On the determina- 
tion of the view function to the images of a surface in a 
nonlinear specular reflector. Int. J. Heat Mass Transfer 
10. 665-619 (3967). 

5. J. A. STRATTON. Electromagnetic Theory. McGraw-Hill. 
New York (1941). or most other books on electro- 
magnetic theory. 

6. E. KREYSZEG. ~ntrodu~t~ffn to ~~~er~t~u~ Geometry and 
Rieman~iu~ Geometr>r. Univ. of Toronto Press (1968). 

REFLEXION SPECULAIRE DU RAYONNEMENT THERMIQUE PAR UNE SURFACE 
REFLECHISSANTE ARBITRAIRE SUR UNE SURFACE RECEPTRICE ARBITRAIRE 

R&sum& On Ctablit des formules g&n&ales qui dtterminent le flux thermique sur une surface receptrice 
arbitraire pour un rayonnement incident et sp&culairement &l&hi par une surface incur& arbitraire. 
La droite support du rayon &l&hi et son intersection avec la surface rkeptrice impiiquent une 
transformation qui lie un &ment de surface r&l&chissante & I’aire r&eptrice par le dbterminant Jacobien. 
Les r&.ultats sont exprimts en fonction des Cquations des surfaces. Les formules gCntrales sont r&duites 

au cas spkial oh la surface rtfl&chissante est de r&volution. 

SPIEGELNDE REFLEXION DER WjiRMESTRAHLUNG VON EINER 
WILLKtJRLICHEN REFLEKTORFtiCHE AUF EINE WILLKORLICHE 

EMPFhiNGERFLiiCHE 

Z~~rn~nfa~~~- Es werden allgemeine Gleichungen abgeleitet, die den ~rmestrahlun~trom auf eine 
willkiirliche Empf~ngerff~~he beschreiben, der von einer willktilich geformten Fllche spiegelnd reflektiert 
wird. 

Die Richtung des reflektierten Strahles und sein Durchstosspunkt mit der Empfingerfliiche delinieren 
eine Transformation, die ein Element des reflektierenden Gebietes auf das Empfdngergebiet tiber die 
Jakobische Determinante abbildet. Die Ergebnisae werden in Abhangigkeit von den Gleichungen der 
Oberll%chen angegeben. Die allgemeinen Gleichungen werden auf den Spezialfall der Rotations&he 

als reflektierendes Gebiet beschrgnkt. 
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:lF:PICA.lIbHOE OTPAHCEHLlE TEIIJIOBC)I’O M3JIY’IEHMII 0’1’ II1’OM:~UOJIl,IIOtl 
IlOREPXHOCTI/I OTPA’fiATEJIR Ic IIPOM:IIIOJIbHO~ Il~~~F:P.YFIOCTM 

IIPMEMHMHA 

AHHoTaqaJi-IIonyYe~ILr ofiuue @O~MYJILI ~nfi oqfetie;reHufi IIOTOIC~ TeIIJIa ~a r1pokm3on~~oii 

nOBepXHOCTM npMeMHHIEa 113;Iy~eHLiR, nafialouero Ira kIuipm.neHIryIo rrosepxIIocTL npom- 

RO.?LHOti l#lOpMLI, a 3aTeM OTpaiKI'HHOI.0 OT HeB. Hanpasneme oTpameIIHor0 q9a Ii era 

IIepeceqeIrue c noBepxHoCTLI0 npIleMtIIrIca no:momeT npoimeecTn npeofipa:IonaIrc~e, 1wr01~op 

oTo%paHiaeT meMeHT oTpaH;aton@i nonepxlrocm II~ npItIImIamI~eti r rIonIoIqLI0 ReTelk 

MMHaHTLI fIliO&. Pe3yJILTaThI IlpCJQCTaBJIeHhI ypanHeHMRMM &rIH IIOHepxIIOCTlZ. ~~OJIyYeIlLI 

06IIIklP $JOf'My"hI JJJIf7 C;IjWWl, I;orfla 0TpaltiamqaH 110nepx~oc~~ R~JI~I~T~FI nonepxfforrh 

tlpau~f!HklH. 


